Rapports scientifiques volume 12, Numéro d'article : 15119 (2022) Citer cet article
746 accès
1 Citation
Détails des métriques
Dans cette étude, les effets de l'application foliaire de sélénium (Se) à différentes concentrations ont été examinés en fonction des changements dans plusieurs paramètres tels que la concentration d'azote, de phosphore et de potassium (NPK) dans le sol et les plants d'avoine, le rendement en avoine, la matière organique dans le sol. sol (OMS), antioxydants non enzymatiques et teneur totale en phénol. Les concentrations de chrome (Cr), de fer (Fe), de manganèse (Mn), de zinc (Zn) et de cuivre (Cu) ont également été évaluées dans la paille et les graines d'avoine. L'étude est conforme aux directives locales et nationales. L'application simultanée d'humate de potassium (K-humate) avec du Se a également été étudiée dans cette étude. Son application a augmenté la biodisponibilité du N et du P dans le sol et leur concentration totale dans la paille et les graines de chaque plante. Les concentrations de Se étaient proportionnelles à la quantité de phosphore trouvée dans le sol (sol P), mais pas aux concentrations de K dans les graines (plante K). L'application de K-humate avec Se a augmenté la fraction biodisponible du K-sol ; cependant, cela n’a pas augmenté la fraction biodisponible de la paille K ou des graines K. Bien que l’application de Se seul ait considérablement amélioré le rendement, l’application simultanée de K-humate n’a montré aucun effet supplémentaire. De plus, les réponses en termes de rendement en graines et de longueur des plantes n'étaient pas significatives après l'application de Se avec ou sans K-humate. La teneur en OMS et en phénol total était proportionnelle au taux d'application de Se avec et sans K-humate. La teneur en antioxydants non enzymatiques était également proportionnelle aux concentrations de Se mais non proportionnelle au K-humate. Les concentrations totales de Se dans le sol, la paille des plantes et les graines ont augmenté avec l'ajout de K-humate. De plus, les concentrations totales de Cr ont été réduites après l’application de Se et de K-humate. La concentration de Fe dans la paille et les graines variait d'un traitement à l'autre, et la concentration de Mn était réduite en réponse à l'application foliaire de Se et de K-humate. Les concentrations de Zn dans la paille et les graines des plantes ont été réduites avec l'application de diverses concentrations de Se. L'augmentation du taux d'application de Se a induit une réduction de la concentration de Cu dans les graines. En revanche, l’application simultanée de Se et de K-humate a augmenté la concentration de Cu dans les graines.
La recherche sur le sélénium (Se) a commencé lorsque Schwartz et Foltz ont découvert que le Se présent dans le fourrage prévenait la cirrhose du foie et la dystrophie musculaire chez les rats1. Basé sur ses propriétés antioxydantes et anticancéreuses, le Se a diverses fonctions comme celle d’agir comme antioxydant chez les plantes2.
La croissance des plantes ne dépend pas de la concentration de Se disponible dans le sol. Cependant, les concentrations de Se dans l’alimentation humaine et animale ont des implications importantes sur la santé3. La frontière entre les concentrations de Se qui satisfont aux besoins nutritionnels essentiels et les concentrations de Se toxiques est étroite et dépend de la forme chimique et des conditions environnementales2. Le Se peut modifier la capacité des plantes à tolérer le stress oxydatif induit par les UV, favoriser la croissance des semis vieillissants et retarder la sénescence. Les nanoparticules de Se (SeNP) ont affecté la croissance des cultivars d'arachide en modifiant les pigments photosynthétiques, les sucres solubles totaux, les enzymes antioxydantes (peroxydase de l'acide ascorbique, catalase et peroxydase), la teneur en phénol, les flavonoïdes totaux et la peroxydation lipidique. En revanche, les conditions de sol sableux ont amélioré la tolérance des plantes après l’application de SeNP comme facteur de stress ou stimulant4. Cette application a également inversé l’effet négatif de la salinité sur l’efficacité photochimique2. L'application d'additifs a réduit l'apparition de réactions indésirables causées par les métaux lourds, la chaleur, les ultraviolets (UV)-B, le froid, le stress salin et la sécheresse5.
Les engrais organiques, tels que l'humate de potassium (KHM) et l'acide fulvique de potassium (BSFA), sont utilisés pour prévenir les maladies des plantes, améliorer la structure du sol et augmenter les niveaux de nutriments du sol6. L’ajout de KHM et de BSFA a modifié les fonctions microbiennes et les niveaux de nutriments ont augmenté dans le sol de ginseng6. De plus, l’application du KHM a amélioré la germination des graines, l’absorption des nutriments et la croissance des semis7.
Se2 > Se1 > control. Thus, Se was found to increase the available N-soil in an application-rate-dependent manner (Table 2). The availability of N-soil after Se application was improved via the simultaneous application of K-humate with the same rate-dependence as observed with Se alone. Comparable results were found using the sum of means for analysis. The insignificant difference found between the sum of means for control and treatment at an Se concentration of 12 × 10−3 mM Se may reflect the relatively low concentration of Se used./p> Se2 > Se1 > control (Table 3). Thus, the foliar application rate of Se caused a rate-dependent increase in the available P-soil. Simultaneous application of K-humate further increased P-soil availability. A rate dependency similar to Se alone was also observed with simultaneous Se and K-humate application. A similar result was observed using the sum of means for data analysis. Significant differences were observed among all treatments./p> Se2 > Se1 > control. Insignificant differences between values were observed when Se was applied without K-humate at concentrations of 12 × 10−3 and 63 × 10−3 mM, and for the sum of means for Se and K-humate applications at concentrations of 12 × 10−3 and 63 × 10−3 mM. Thus, the application rate of Se caused a proportional increase in P-soil, P-straw, and P-seeds. Furthermore, the simultaneous application of K-humate augmented this effect./p> Se2 > Se1 = control (Table 4). Again, the foliar application rate of Se causes a proportional increase, in this case, in K-soil. The application of K-humate with Se augmented this effect. A similar rate dependency was also observed with simultaneous application and when the sum of means was used. An insignificant difference was observed between the sum of means for controls and Se concentrations of 12 × 10−3 mM./p> Se2 > Se1 > control. The simultaneous application of K-humate increased the yield only slightly, resulting in insignificant differences. Similar findings were also observed when the sum of means was used. In contrast, seed production was not significantly affected, and plant length (m × 10–2) did not show a significant response. In contrast, Se application to potato plants enhanced tuber yield, plant growth, and quality compared with controls. Moreover, Se application along with different N additions ultimately increased potato productivity compared with Se or N alone23. Similarly, the grain yield increased when Se was applied; this application was significant at low levels24./p> Se2 > Se1 > control. The addition of K-humate by foliar application significantly augmented the OMS content (%) (Table 6). Application of Se also increased the non-enzymatic antioxidant content; however, the increases were insignificant at Se concentrations of 12 × 10−3 and 63 × 10−3 mM. The highest values for non-enzymatic antioxidants were observed at Se concentrations of 88 × 10−3 mM. The application of K-humate along with Se did not significantly augment the effects observed after the application of Se alone. Analyses using the sum of means were completely consistent with these findings./p> Se2 > Se1 > control. Furthermore, this effect was significantly amplified with the simultaneous application of K-humate. Analysis using the sum of means gave comparable results. Se enhances the ability of plants to cope with stress by stimulating plant cell antioxidant capacity though the upregulating of antioxidant enzymes, such as CAT, SOD, and GSH-Px. Se also increases the synthesis of PCs, GSH, proline, ascorbate, alkaloids, flavonoids, and carotenoids. Se may also induce the spontaneous dismutation of the superoxide radical into H2O2. Elevated antioxidant capacity can reduce lipid peroxidation by lowering ROS accumulation under metal-induced oxidative stress conditions25. Application of Se using foliar spray also induced an increase in the concentration of rosmarinic acid20./p> Se2 > Se1 > control. The additional application of K-humate significantly amplified these effects (Table 7). The treatment of K-humate that increased Se content in the soil may be owing to experimental errors, however, increasing Se content in either straw or seeds may be owing to the increased stimulating movement from soil to different parts of the plant. Se-straw content increased with increasing the Se foliar application; this effect decreased in the following order: Se3 > Se2 > Se1 > control. The simultaneous application of K-humate augmented the effects observed after the application of Se alone. Total Se concentration also increased Se-seeds like Se-straw for Se alone, Se with K-humate, and using the sum of means for analysis./p> Se3 > Se1. In response to Se application, the Cr-straw content decreased (Table 8). The difference between Se2 and Se3 was insignificant. K-humate addition induced a notable increase in Cr-straw in the following order: control > Se3 > Se2 > Se1. This may be owing to the increased stimulating movement of Cr from soil to different parts of the plant. Results obtained from Se treatments varied depending on the presence of K-humate. Cr-seeds decreased in the following order: Se2 > Se3 > Se2 > control. The addition of K-humate increased the Cr-seed content compared with Se alone; however, the difference between Se2 and Se3 was insignificant. Analysis using the sum of means did not produce significant differences./p> Se1 > control > Se2 (Table 9). Differences were insignificant among control, Se1, and Se2. K-humate caused concentrations of Fe-straw to significantly increase in the following order: control > Se3 > Se2 > Se1. Differences between control and Se3 as well as Se1 and Se2 were insignificant. Analysis using the sum of means was similar. Neither Se nor Se with K-humate applications produced significant changes in Fe-seeds. Analysis using the sum of means was similar. Low concentration of Se application may enhance plant productivity and encourage phytoremediation by improving plant tolerance to stress and enhancing photosynthesis25. Further, a significant increase was observed in concentrations of Fe and S in rice grain grown in N-limiting conditions while Ca that have been treated with Se regardless of N supply21./p> Se2 > Se1 > Se3. No significant difference was found between control and Se1 (Table 10). In contrast, K-humate addition further reduced Mn-straw concentrations in the following order: control > Se1 > Se3 > Se2. The control and Se1 were not significantly different when using the sum of means for analysis. Likewise, no significant difference was seen between Se1 and Se3. Accumulation of Mn in seeds varied among treatments in the following order: control > Se2 > Se3 > Se1. K-humate addition altered this order to be in the following order: control > Se2 > Se1 > Se3. No significant differences were observed between Se2 and Se3 when the sum of means for analysis was used. Previously, the application of Se increased the concentrations of Mg and molybdenum in grains grown in 16 and 24 mM N compared with N-limited plants21./p> Se1 > control > Se3 (Table 11). The application of K-humate with Se resulted in some insignificant variations compared with the application of Se alone. Control, Se1, and Se3 were insignificantly different when the sum of means was used for the analysis. Concentrations of Zn in seeds were reduced after Se application. K-humate with Se foliar application altered the concentration of Zn in seeds with impacts in the following order: control > Se3 > Se1 > Se2. The difference between Se1 and Se3 was insignificant. Additionally, insignificant differences in Zn concentrations after application of Se1, Se2, and Se3 were found when the sum of means was used for analysis. Low concentrations of Se possibly enhance plant productivity and phytoremediation capacity by improving the ability of plants to tolerate stress and enhancing photosynthesis25./p> control > Se2 > Se3 as it shown in Table 12. Application of Se with K-humate showed significant changes in the Cu-straw content in the following order: Se1 > Se2 > control > Se3. No significant differences were observed using the sum of means for analyses. In contrast, the foliar application of Se resulted in increases in Cu-seed at concentrations of Se1 and Se3; however, at 63 × 10−3 mM (Se2), a reduction in Cu-seed was observed. K-humate with Se simultaneously resulted in increased Cu-seed content with impacts decreasing in the following order: Se3 > Se1 > control > Se2. The sum of means analysis showed no significant variation between control and Se2. Previously, the application of Se led to a decrease in the concentrations of Cu in grains grown in 16 and 24 mm N compared with N-limited plants21./p> Se1 > control > Se3. Concentrations of Zn in oat seeds were reduced by Se supplementation. Increases in Se concentrations from 12 × 10−3 to 88 × 10−3 mM reduced Cu-seed, and Se application with K-humate produced only insignificant increases in the Cu-straw content in the following order: Se1 > Se2 > control > Se3. The additional application of K-humate altered this order to Se3 > Se1 > control > Se2./p>